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ABSTRACT 
The use of lidar data in assimilation of aerosol transport 
models is discussed from the lidar observation point of 
view. Examples of assimilation of data from the 
ground-based lidar network (AD-Net) and the space-
borne lidar CALIPSO are introduced, and the optimum 
observations and data processing methods are discussed. 
A four-dimensional variational data assimilation system 
for a regional dust model was developed by Yumimoto 
et al. and applied to analysis of several Asian dust 
events using the AD-Net dust extinction coefficient 
data. It was demonstrated that the data assimilation 
method was useful not only for better reproducing the 
dust distribution but also for better estimating the dust 
emission in the source regions. A data assimilation 
system for a global aerosol model using a four-
dimensional ensemble Kalman filter was developed by 
Sekiyama et al. and applied to CALIPSO data. It was 
also applied to AD-Net data. The attenuated backscatter 
coefficient and the volume depolarization ratio were 
used in the CALIPSO data assimilation successfully. In 
the assimilation of the ground-based lidars, however, 
the use of the dust extinction coefficient derived from 
the backscattering signals and the depolarization ratio 
was better, because it was difficult with the model to 
reproduce aerosol distributions in the lower altitudes.  

1. INTRODUCTION 
Data assimilation is commonly used in meteorological 
modeling for weather forecasting and reanalysis, 
however, application of data assimilation methods to 
chemical transport model is relatively new. The first 
assimilation of mineral dust data with ground-based 
lidars was reported by Yumimoto et al. [1], and 
assimilation of CALIPSO data was reported by 
Sekiyama et al. [2]. It was demonstrated that the results 
of data assimilation reproduced Asian dust distribution 
much better than the models without data assimilation. 
It was also shown that data assimilation was useful for 
estimating dust emission more accurately. It was also 
shown that data assimilation method could be used for 
accurate forecasting of dust phenomena. 

We may also say that data assimilation methods can 
extract information from observation data effectively. 
Data assimilation, however, is dependent on the model, 
and the observations required for data assimilation 
depends on the purpose and the performance of the 
models. In aerosol data assimilation, it is essential how 

aerosol components and their microphysical and optical 
characteristics are treated in the model.  

2. ASIAN DUST STUDIES WITH 4D-VAR 
ASSIMILATION OF AD-NET DATA 

A four-dimensional variational (4D-Var) data 
assimilation system for AD-Net was developed by 
Yumimoto et al. and performed assimilation 
experiments for several Asian dust events [1, 3-5] The 
data assimilation system is based on the real-time 
regional scale chemical transport model named 
RAMS/CFORS [6]. The model has 40km horizontal 
resolution and 40 vertical grid layers. Meteorological 
boundary conditions to RAMS are taken from 
NCEP/NCAR reanalysis data with 2.5deg resolution 
and a 6h interval. RAMS/CFORS has 12 size bins to 
characterize the dust-particle size distribution, and it 
considers dust removal processes due to wet deposition, 
dry deposition and gravitational settling. The optical 
characteristics of dust are calculated for each size bin 
and summed to derive the optical parameters such as 
the extinction coefficient. Consequently, both the mass 
concentration and the optical parameters should be 
properly described for transported dust. The dust size 
distribution at emission was adjusted so that the 
observed size distribution in dust events in Beijing was 
reproduced.  

In the dust data assimilation, a scaling factor (or the 
dust emission factor) was introduced in the dust 
emission function as the control parameter to optimize 
daily dust emission at each grid. The scaling factor can 
represent changes in surface conditions such as 
vegetation growth that are not considered in the original 
model. The size distribution at dust emission was not 
changed in the data assimilation. In 4D-Var data 
assimilation, the adjoint model that propagates the 
discrepancy between simulated and measured values 
backward is used to optimize the control parameters. 

The dust extinction coefficient profiles at 532nm 
derived from the two-wavelength (1064nm, 532nm) 
polarization sensitive (532nm) backscattering lidars in 
AD-Net were used for the data assimilation. The dust 
extinction coefficient was derived with the following 
procedure. Firstly, clouds were detected, and the upper 
boundary for the aerosol retrieval was determined. The 
aerosol extinction coefficient was then derived with the 
Fernald’s method with a constant lidar ratio (S1=50). 
The contribution of mineral dust in the extinction 



 

coefficient was estimated with the method using the 
depolarization ratio [7, 8]. It is based on the assumption 
of external mixing of non-spherical dust and spherical 
aerosols. An error analysis showed that both the error 
caused by uncertainty in S1 and the error in estimating 
dust mixing ratio converge in dense dust condition [9]. 
One-hour averaged dust extinction coefficient profiles 
up to 6-km height were used with a 3-hour interval in 
the data assimilation.  

The model region and locations of the AD-Net lidar 
observation sites are shown in Figure 1.  

 
Figure 1. Model region and lidar sites. Data from the stations 
indicated in red were used in Yumimoto et al. [3]. 

Figure 2 shows example of time-height indications of 
dust extinction coefficient at three locations derived 
from the lidars, calculated with the model without 
assimilation and with assimilation. 

 
Figure 2. Time-height indications of dust extinction 
coefficient at Seoul, Matsue, and Tsukuba. The first row 
shows observation. Second and third rows show modeled dust 
extinction coefficient without and with data assimilation  [3]. 

As can be seen in Fig. 2, the dust event is better 
reproduced with the data assimilation. The 
improvement is natural because the data at these 
locations were used in the data assimilation. However, 
the two-dimensional distribution of dust optical depth 
was also much improved, and it agreed better with 

satellite data (OMI AI and MODIS AOT). The 
assimilated dust extinction coefficient also agreed well 
with the CALIPSO/CALIOP dust extinction coefficient 
derived with the same data analysis method in a wide 
area in downstream. Also, the result of data assimilation 
reproduced surface PM10 in Korea and Japan very well 
[8, 10].  

In the dust event in the end of March of 2007 shown in 
Figure 2, the dust emission was underestimated in the 
original model, and the dust emission increased with 
the data assimilation. However, in the event in the end 
of May in 2007, the original model overestimated the 
dust emission, and the emission was reduced with the 
data assimilation. It was found that the decrease in dust 
emission was consistent with the observed vegetation 
growth in Mongolia during March to May [11]. 

 
Figure 3. Dust emission for May 21-30, 2007 estimated by 
CFORS (a) without data assimilation, (b) with data 
assimilation. (c) Averaged dust emission factor [11]. In this 
event, dust emission in Gobi desert was suppressed probably 
with vegetation growth that was not considered in the original 
model.  

The same method as described above for mineral dust 
can be applied, in principle, to regional air pollution. In 
that case, the control parameter would be a factor 
modifying the emissin inventory data, but the area of 
emission is much wider than in dust phenomena, and 



 

the change in emission that is relevant to emission 
inventory would be extremely slow. We have 
consequently taken rather a climatological approach 
than data assimilation, so far, in regional air pollution 
study [12].  

The adjoint model used in 4D-Var data assimilation is a 
powerful tool, itself, in case studies of air pollution 
epsodes and dust events. Figure 4 shows example of the 
adoint variables integrated backward from the observed 
lidar extinction coefficients for an air-pollution episode 
(a-c) and for a dust event (d-f). Unlike trajectory 
analysis, all processes in original model such as 
diffusion and deposition are included in the analysis 
with the adjoint model. It can be seen in the air-
pollution episode shown in Figure 4 a-c that the aerosol 
plume was transported from the industrial area in the 
south of Beijing.  

 
Figure 4. Adjoint variables integrated backward from the 
observed lidar spherical aerosol extinction coefficient (a-c) 
and non-spherical extinction coefficient (d-f) [13]. The lidar 
sites used in the calculation are indicated with the red dots. 

3. DATA ASSIMILATION WITH A FOUR-
DIMENSIONAL ENSEMBLE KALMAN 
FILTER 

Sekiyama et al. develop data assimilation system for a 
global aerosol model using a four-dimensional 
ensemble Kalman filter and performed assimilation of 
CALIPSO/CALIOP data. Their global aerosol model 
MASINGAR considered optical properties of 

molecules, spherical aerosol (sulfate, sea salt (10 size 
bins), organic aerosols, and black carbon) and dust 
aerosol (10 size bins). They used the attenuated 
backscattering coefficient and the volume 
depolarization ratio (Level 1B data) for the data 
assimilation [2, 14]. The control variables were dust 
concentration, the sulfate concentration, and surface 
dust emission flux scaling factor. Sekiyama et al. 
estimated the dust emission factor for the dust events in 
2007, and the results were consistent with the results of 
Yumimoto et al. with RC4 using the AD-Net data [3-5, 
11]. 

Sekiyama et al also applied the data assimilation system 
to AD-Net data. In the assimilation of the ground-based 
lidars, they found it difficult to use the attenuated 
backscattering coefficient, because the model was not 
able to reproduce aerosols from local emission sources 
in the lower layers and to calculate the attenuated 
backscattering coefficient accurately from the ground.  
Using the dust and spherical aerosol extinction 
coefficients, they obtained reasonable results [15]. In 
the data assimilation using EnKF, the observations 
close to the emission source was more important than in 
4D-Var. It is related to the shorter assimilation window 
(48 hours in Sekiyama et al.) compared with that in the 
4D-Var system (~6 days in [3]). 

For dust forecasting, both 4D-Var and EnKF methods 
can be used, but for data assimilation with very 
complicated chemical transport models, EnKF method 
has an advantage because it does not need the adjoint 
model [15]. 

4. DISCUSSION 
In the data assimilation of AD-Net data introduced 
above, the dust extinction coefficient derived with the 
simple one-wavelength method [8] was used. The data 
analysis method to derive extinction coefficients of dust, 
sulfate, and sea salt based on a spheroid dust model 
[16] can also be applied to the AD-Net data. The 
extinction coefficient estimates for aerosol components 
derived wit of such methods can be used for data 
assimilation.  

For (multi-wavelength) high-spectral-resolution lidars 
(HSRL) (or Raman lidars, if the temporal resolution 
and the measurement frequency are sufficiently high), it 
would be better to use the extinction coefficients, the 
backscattering coefficients, and the particle 
depolarization ratios, directly, if the aerosol model used 
in the chemical transport model for data assimilation is 
sufficiently sophisticated.  

One of the targets of the future studies with data 
assimilation would be constructing aerosol reanalysis 
data. It would be extremely useful for studies of the 



 

effects of aerosols on the environment and human 
health. 
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